Patterns of Negative Shifts and Signed Shifts

Kassie Archer¹, Sergi Elizalde² and Katherine Moore^{2*}

¹ University of Texas at Tyler, TX, USA
² Dartmouth College, NH, USA

Patterns in Dynamical Systems

Let $f: X \mapsto X$ be a map of a linearly ordered set X. For any point $x \in X$, consider the finite sequence

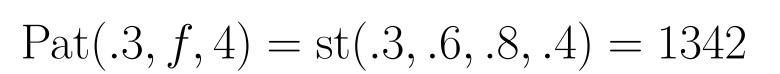
$$x, f(x), f(f(x)), f^{3}(x), \dots, f^{n-1}(x),$$

and associate a permutation to this sequence determined by the relative order, an *allowed pattern*. We write

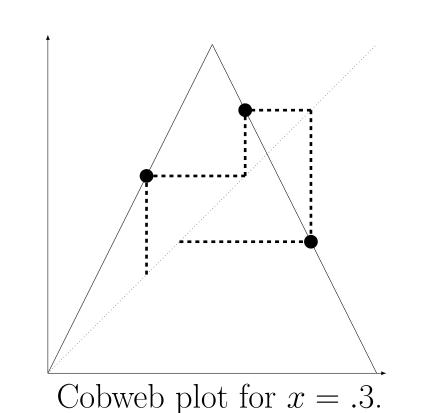
$$Pat(x, f, n) = st(x, f(x), f(f(x)), \dots, f^{n-1}(x)) = \pi.$$

Example: Consider the tent map

$$f(x) = \begin{cases} 2x & 0 \le x \le 1/2 \\ 2(1-x) & 1/2 \le x \le 1 \end{cases}$$



Moreover, one can show $321 \notin \text{Allow}(f)$.



Forbidden Patterns

Theorem ([2]): Every piecewise-monotone map $f:[0,1] \mapsto [0,1]$ has forbidden patterns, i.e. patterns that never arise as iterates. Moreover, the number of allowed patterns is asymptotic to k^n , where the topological entropy of f is equal to $\log(k)$.

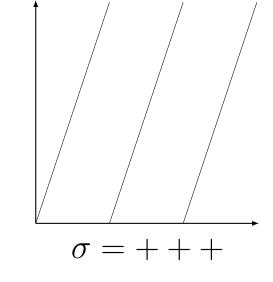
Signed Shifts

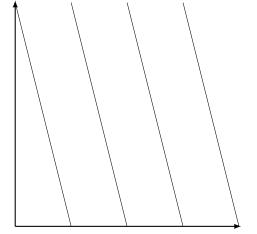
The signature of a signed shift is $\sigma = \sigma_0 \sigma_1 \dots \sigma_{k-1} \in \{+, -\}^k$. Let $\mathcal{W}_k = \{0, 1, \dots, k-1\}^{\infty}$ be given with the linear order $<_{\sigma}$ by defining $v_1 v_2 v_3 \dots <_{\sigma} w_1 w_2 w_3 \dots$ if

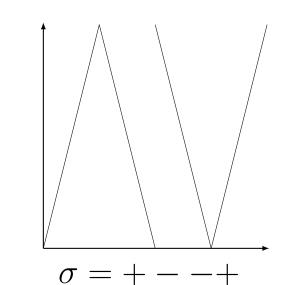
- $v_1 < w_1$,
- $v_1 = w_1, \, \sigma_{v_1} = + \text{ and } v_2 v_3 \dots <_{\sigma} w_2 w_3 \dots, \text{ or }$
- $v_1 = w_1, \, \sigma_{v_1} = \text{ and } v_2 v_3 \ldots >_{\sigma} w_2 w_3 \ldots$

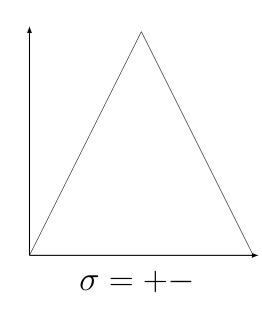
We define the signed shift $\Sigma_{\sigma}: (\mathcal{W}_k, <_{\sigma}) \mapsto (\mathcal{W}_k, <_{\sigma})$ as the map

$$\Sigma(w_1w_2w_3\ldots)=w_2w_3\ldots.$$









Denote by Σ_k and Σ_{-k} shifts with $\sigma = +^k$ and $\sigma = -^k$, respectively.

Example: $Pat(2010^{\infty}, \Sigma_3, 4) = st(2010^{\infty}, 010^{\infty}, 10^{\infty}, 0^{\infty}) = 4231$ $Pat(11010^{\infty}, \Sigma_{+-}, 5) = st(11010^{\infty}, 1010^{\infty}, 010^{\infty}, 10^{\infty}, 0^{\infty}) = 34251$

A Bijection and Segmentations

Define a bijection from S_n to marked cycles of length n by

$$\pi = \pi_1 \pi_2 \dots \pi_n \mapsto \hat{\pi} = (\star, \pi_2, \pi_3, \dots, \pi_n)$$
$$= \hat{\pi}_1 \hat{\pi}_2 \dots \hat{\pi}_n.$$

A σ -segmentation of $\hat{\pi}$ is $0 = e_0 \leq \cdots \leq e_k = n$ such that $\hat{\pi}_{e_t+1}\hat{\pi}_{e_t+2}\dots\hat{\pi}_{e_{t+1}}$ is increasing if $\sigma_t = +$ and decreasing if $\sigma_t = -$ (some endpoint conditions omitted).

A σ -segmentation of $\hat{\pi}$ defines a finite word $\zeta = z_1 z_2 \dots z_{n-1}$, by taking $z_i = j$ whenever $e_j < \pi_i \le e_{j+1}$, for $1 \le i \le n-1$.

When $\pi_n \neq n$, let $\pi_x = \pi_n + 1$ and $p = z_{[x,n-1]}$.

When $\pi_n \neq 1$, let $\pi_y = \pi_n - 1$ and $q = z_{[y,n-1]}$.

Characterization of Allowed Patterns

Theorem: $\pi \in \text{Allow}(\Sigma_{\sigma})$ if and only if there is a σ -segmentation of $\hat{\pi}$ such that $p \neq q^2$ and $q \neq p^2$.

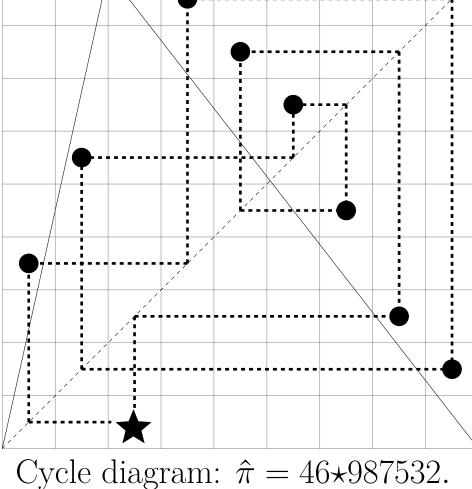
Informally, $\pi \in \text{Allow}(\Sigma_{\sigma})$ if and only if $\hat{\pi}$ has the same shape as Σ_{σ} .

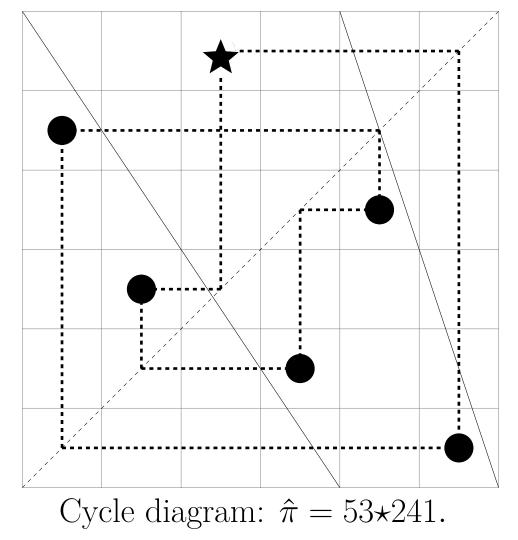
Example: $\pi = 149267583 \mapsto \hat{\pi} = (\star, 4, 9, 2, 6, 7, 5, 8, 3) = 46 \star 987532$ We take a (+-)-segmentation of $\hat{\pi}$ to be $(e_0, e_1, e_2) = (0, 2, 9)$ giving

$$\zeta = 01101111, q = z_{[4,8]} = 01111 \text{ and } p = z_{[2,8]} = 1101111.$$

Therefore, $\pi \in \text{Allow}(\Sigma_{+-})$; and whenever $m \geq 4$, for $s^{(m)} = \zeta p^{2m} 10^{\infty}$

 $Pat(s^{(m)}, \Sigma_{+-}, 9) = \pi.$





Example: $\pi = 615423 \mapsto \hat{\pi} = (\star, 1, 5, 4, 2, 3) = 53\star241$ We take a (--)-segmentation of $\hat{\pi}$ to be $(e_0, e_1, e_2) = (0, 4, 6)$ giving

$$\zeta = 10100, q = 0, p = 00, \text{ and so } p = q^2.$$

Although $\hat{\pi}$ has a (--)-segmentation, $\pi \notin \text{Allow}(\Sigma_{-2})$. A -3-segmentation of $\hat{\pi}$ is $(e'_0, e'_1, e'_2, e'_3) = (0, 2, 4, 6)$, defining the prefix

$$\zeta' = 20210, q' = 0 \text{ and } p' = 10.$$

Since $p' \neq (q')^2$, we have $\pi \in \text{Allow}(\Sigma_{-3})$.

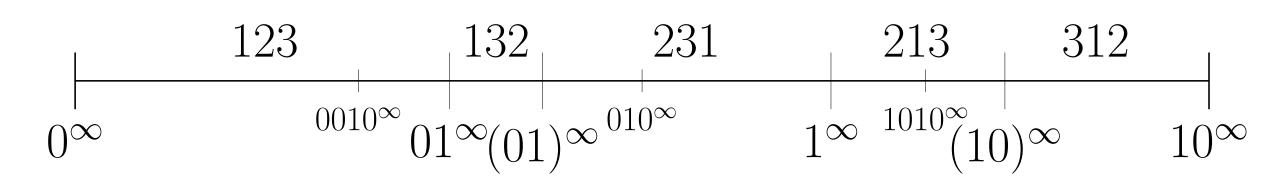
Allowed Intervals

Theorem: Let $\operatorname{Int}(\pi, \Sigma_{\sigma}) = \{w : \operatorname{Pat}(w, \Sigma_{\sigma}, n) = \pi\}$. Then $\operatorname{Int}(\pi, \Sigma_{\sigma})$ is a finite union of the intervals of the form

$$\{\zeta w_{[n,\infty)}: q^{\infty} <_{\sigma} w_{[n,\infty)} <_{\sigma} p^{\infty}\}$$

where ζ , q and p are defined (when possible) by a valid σ segmentation of $\hat{\pi}$.

Example: The intervals $\operatorname{Int}(\pi, \Sigma_{+-})$ for $\pi \in \operatorname{Allow}_3(\Sigma_{+-})$.



Enumerations

 $N(\pi) := \min\{k : \pi \in \text{Allow}(\Sigma_k)\} \text{ and } \overline{N}(\pi) := \min\{k : \pi \in \text{Allow}(\Sigma_{-k})\}$

Theorem ([4]): $N(\pi) = 1 + \text{des}(\hat{\pi}) + \delta(\hat{\pi}),$

where $\delta(\hat{\pi})$ is usually 0 and sometimes 1.

Theorem ([3], [5]): $\overline{N}(\pi) = 1 + \operatorname{asc}(\hat{\pi}) + \epsilon(\hat{\pi}),$

where $\epsilon(\hat{\pi})$ is usually 0 and sometimes 1.

$ n\setminus k $	2	3	4	5	6			
3	6							
4	18	6						
5	48	66	6					
6	126	402	186	6				
7	306	2028	2232	468	6			
$ \{\pi \in \mathcal{S}_n : N(\pi) = k\} $								

3 6 4 20 4 5 54 62 4 6 140 408 168 4 7 336 2084 2196 412	$n \setminus k$	2	3	4	5	6
5 54 62 4 6 140 408 168 4	3	6				
6 140 408 168 4	4	20	4			
	5	54	62	4		
7 336 2084 2106 412	6	140	408	168	4	
1 330 2004 2130 412	7	336	2084	2196	412	4

Theorem: We give a formula for $|\{\pi \in \mathcal{S}_n : \overline{N}(\pi) = k\}|$; an analogous formula for $|\{\pi \in \mathcal{S}_n : N(\pi) = k\}|$ is known, [4].

Topological Entropy

If f is piecewise-monotone, the topological entropy of f of equals $\lim_{n\to\infty}\frac{1}{n}\log(|\operatorname{Allow}_n(f)|)$, [2]. We verify that

$$\lim_{n \to \infty} \frac{1}{n} \log(|\operatorname{Allow}_n(\Sigma_{\sigma})|) = \log(k),$$

giving an alternative derivation of the topological entropy of Σ_{σ} .

- [1] K. Archer, Characterization of the allowed patterns of signed shifts, Discrete Applied Math 217 (2017), 97-109.
- [2] C. Bandt, G. Keller and B. Pompe, Entropy of interval maps via permutations, *Nonlinearity* 15 (2002), 1595–1602.
- [3] É., Charlier, and W. Steiner, Permutations and Negative Beta-Shifts. *Numeration* (2016), 30.
- [4] S. Elizalde, The number of permutations realized by a shift, SIAM J. Discrete Math. 23 (2009), 765–786.
- [5] S. Elizalde and K. Moore, "Patterns of Negative Shifts and Beta-Shifts". Preprint, arXiv:1512.04479.